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Can you fetch my screwdriver?

Yes Please

I haven't seen a screwdriver

but there is a toolbox.

Localizing toolbox...

Navigating to toolbox...

Would you like me to check

the toolbox?

Figure 1: Our text-based map grounds an LLM to plan actionable navigation goals given the scene
context to address user-specified tasks.

Abstract: Large Language Models (LLM) have emerged as a tool for robots to
generate task plans using common sense reasoning. For the LLM to generate
actionable plans, scene context must be provided, often through a map. Recent
works have shifted from explicit maps with fixed semantic classes to implicit open
vocabulary maps based on queryable embeddings capable of representing any se-
mantic class. However, embeddings cannot directly report the scene context as
they are implicit, requiring further processing for LLM integration. To address
this, we propose an explicit text-based map that can represent thousands of se-
mantic classes while easily integrating with LLMs due to their text-based nature
by building upon large-scale image recognition models. We study how entities in
our map can be localized and show through evaluations that our text-based map lo-
calizations perform comparably to those from open vocabulary maps while using
two to four orders of magnitude less memory. Real-robot experiments demon-
strate the grounding of an LLM with the text-based map to solve user tasks.
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1 Introduction
Scene understanding is fundamental for robots to generate actionable plans within their environment.
A popular task for evaluating scene understanding is Object Goal Navigation (ObjectNav) [1, 2],
where the robot must navigate to a target object within an unknown scene. Two components have
emerged as recurring aspects in recent works on ObjectNav. First, a Large Language Model (LLM)
which plans navigation goals, and second, a map that serves as a memory module storing observed
objects and which can ground the reasoning of the LLM.
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Map representations in previous works can be classified as either explicit or implicit. Explicit maps
label locations as a class from a fixed set of classes [3, 4, 5]. This limits the tasks the map can
handle but has the advantage of directly reporting the classes it contains. In contrast, implicit, or
open vocabulary maps build upon the line of work in computer vision starting from CLIP [6], later
extending to object detection [7, 8] and segmentation [9, 10, 11, 12], based on vision embeddings
that are queryable by arbitrary text. Recent works in ObjectNav have considered maps where a
location stores an embedding instead of a label [13, 14]. In theory, such maps can represent any
objects, rooms, and affordances. In practice, there is no guarantee that the embeddings will capture
the desired information. Moreover, embeddings cannot directly report what entities they represent.
Instead, they must be queried to retrieve potential matches. For simple tasks along the lines of "go
to <thing>", such maps can be directly queried for <thing>. However, additional processing is
needed to identify relevant queries for more complex tasks lacking an explicit goal object or region.

We propose a text-based map that can represent an extensive amount of semantic classes explicitly
by leveraging multi-label image classification models trained to recognize thousands of semantic
classes. Our map called the tag map, is a memory-efficient unstructured database storing viewpoints
and the recognized entities for each viewpoint as text tags. Despite the minimal amount of infor-
mation contained within, we find that tag maps can produce 3D localizations for both objects and
rooms/regions with sufficient precision and recall to serve as useful navigation goals. Moreover, the
explicit text nature of the tag map lends itself well for use in grounding LLMs.

Our main contributions are the following:
• A text-based map, building on top of large image classification models, capable of representing

thousands of semantic classes from common and rare objects to rooms and regions.

• A simple, yet effective, method to localize in 3D, the semantic classes from the text-based map.

• A method for grounded LLM spatial reasoning over the text-based map to generate plans from
given user task specifications.

Through quantitative experiments, we demonstrate that the localizations from our map perform com-
parably in precision and recall against state-of-the-art open vocabulary maps while storing orders of
magnitudes less information. Real-world robot experiments demonstrate the effectiveness of our
map at grounding a LLMs to reason from task descriptions and generate feasible navigation plans.

2 Related Work

Semantic Map Representations. A semantic map represents the scene geometry and assigns se-
mantic classes to that geometry. Earlier works leveraged 2D or 3D segmentation and object detec-
tion models trained on a fixed set of classes to generate class annotations which are stored in the
map [15, 16, 17, 18, 19]. Semantic maps can be extended into scene graphs by further annotating
relationships between labeled instances [20, 21, 22], such as objects next to each other or objects
contained in a room. Recent interest has been directed towards open vocabulary representations
where rather than explicit classes, the map is annotated with embedding vectors queryable by arbi-
trary text. Such maps have attached embeddings to dense scene geometry [23, 24, 13], to segmented
instances or objects [25, 26, 14], as well as into scene graphs [27, 28, 29].

Object Goal Navigation. While some works in ObjectNav applied end-to-end learning [30, 31, 32,
33, 34, 35] or explored semantics-agnostic exploration strategies [36], many works have opted to
maintain a map during runtime. Storing what has already been observed in a map can help in picking
semantically relevant locations to explore further [37, 38], as a more privileged input to a learned
policy [3, 35], to explore unseen frontiers [39, 40, 41, 42, 43], and to reduce exploration when
given followup goals [5]. Multiple works have applied LLMs to reason over the map semantics.
Given a target object, commonsense reasoning from an LLM is useful for suggesting related objects
and rooms for more efficient selection of regions, frontiers, or objects to explore [40, 42, 43, 44].
LLMs have also been applied to translate natural language user task specifications into actionable
navigation goals within the map [13, 14, 5].

2



Large Language Model

localize_tag("dining room")

dining
room

carpet

chair
...

living

room

fireplace

lamp
...

Tag Map

To give you the context of the
environment, you are provided
with a list of tags. 
Each tag describes something
likely to be found in the
environment.
- dining room
- fireplace
  ...

localize_tag("fireplace")

I will turn on the fireplace
when you are dining.

Can you improve the ambiance
around the dinner table?Coarse Localization

Recognized
Tags

Add Viewpoint

Viewpoints

RGB
Image

Depth
Image Pose

Depth
Filter

Pose

Depth
Statistics

RGB Image

Depth Image

Center
Crop

Tagging
Model

Center
Crop

Tagging
Model

Crop Ensemble

Figure 2: Our text-based map (tag map) stores viewpoints from a scene and the entities (tags)
recognized by an image tagging model from these viewpoints. The stored tags are used to create a
context prompt for grounding an LLM to generate navigation plans over the scene. Tags in the map
can be coarsely localized in space and fed into the LLM for further spatial reasoning.

Multi-Label Classification. A well-studied computer vision task [45, 46], also known as image
tagging, where the objective is to recognize the semantic classes contained within an image. In
contrast to segmentation or detection, tagging does not require localization of the classes within the
image. Tagging models are a mature technology with several commercially available APIs [47, 48,
49] that can recognize thousands of classes. In this work, we use the Recognize Anything (RAM)
family of open-source models [50, 51] on par with most commercially available APIs.

3 Text-Based Map Representation
The core of our approach is the text-based tag map which stores the unique entities (tags) recognized
by an image tagging model and relates them to the viewpoints they were recognized from. Its data
structure can be implemented as a hash table, where the keys are the unique recognized entities and
the values are references to the corresponding viewpoints. Each viewpoint stores a unique ID, its
camera pose, and a depth statistic used later for localization. We emphasize that the viewpoint RGB
and depth images are not stored in the map. An overview of our framework is shown in Fig. 2.

3.1 Map Construction
attach, bathroom, wall,

door, electric outlet,

plug, switch, white, 

bathroom accessory,
bathroom door, room, screen
door, socket, toilet bowl

table, dinning table,
floor, peak, plank,

stool, table top, wood

attach, bathroom,

wall, door,

electric outlet,

plug, switch,

white, fridge

Figure 3: Left: Example of a close-up view dis-
carded by the depth filtering step. Such images
tend to generate inaccurate tags due to a lack of
context. Right: An image crop results in sig-
nificant differences in the tags recognized by an
image tagging model. Using a crop augmented
ensemble of tagging models filters out the in-
consistent tags in red.

Building a tag map from RGB-D images and
poses of a set of viewpoints is shown in Fig. 2.
From the depth image, we compute the mean and
median depth, along with the 80th quantile depth
value representing the far plane distance of the
viewpoint frustum. A filtering step checks the
mean and median depth and discards the frame
if it is considered a close-up view. The RGB im-
age is then forwarded through a tagging model
ensemble, where each ensemble member receives
a different centered cropped version of the image
that removes a small portion of the edges. The
final tags are the tags agreed on by the ensemble,
filtering out false positive tags due to poorly ob-
served objects around the edges of an image. Effects of the depth and crop ensemble filters are
visualized in Fig. 3. The tags, poses, and viewpoint frustum distances are registered in the tag map.

3.2 Coarse-Grained Localization
Given a tag, multi-view consistency over the tag’s corresponding viewpoints is used to generate
localized regions in the tag’s near vicinity, as demonstrated in Fig. 4. The procedure is similar to
Space Carving [52], where viewpoint intersections are used to reconstruct 3D geometry. Unlike
Space Carving, viewpoints in the tag map may be generated from partial views of an entity.
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Figure 4: Illustrative coarse localization example of “table” with two viewpoints. Spaces covered
by the viewpoints are voxelized and each voxel is assigned votes based on the number of viewpoints
that contain it. Clustering voxels of at least v votes generates proposals at a confidence level of v.
Non-maximum suppression is applied to remove redundant proposals.

piano cowboy boots bathroom

thermostat barbecue grill basketball court

Figure 5: Example coarse localizations for various objects and locations, along with images where
they were recognized. The large vocabulary of image tagging models allows our framework to
localize uncommon categories such as “thermostat”, “cowboy boots” and “basketball court”.

Localizing a tag begins with retrieving that tag’s corresponding viewpoints and mapping each view-
point to its 3D frustum using the stored far plane distance. The space covered by the viewpoints is
voxelized and each voxel is assigned votes corresponding to the number of viewpoints that contains
it. The voxel votes represent a likelihood of the tag over the space. Localization proposals at a con-
fidence level v are extracted by thresholding out voxels below v votes and clustering the remaining
voxels using DBSCAN [53]. A confidence level of n indicates that a proposal is consistent across
at least n viewpoints. We set a series of clustering thresholds to capture not just the global but also
local maxima of the voxel likelihood. Lastly, a non-maximum suppression step is applied to remove
proposals that contain within it proposals of higher confidence levels. Fig. 5 shows example coarse
localizations for various tags of objects and locations.

3.3 Grounding Large Language Models

We opt for the simple method of grounding the LLM by appending the list of unique tags from the
tag map into the prompt of the LLM, as shown in Figure 2. The LLM is additionally given access to
an API for requesting information from the tag map. The API exposes the following functions:

• localize tag(tag): Returns the proposals for the tag along with their confidence levels.
• region region dist(r1, r2): Computes the distance between regions r1 and r2.
• point region dist(p, r): Computes the distance to reach region r from point p.

The API enables the LLM to reason spatially about the tags in its prompt. For example, given a
query of "go to the kitchen fridge", the LLM can localize “kitchen” and “fridge” and set
the navigation goal to be the fridge proposal with a small distance to a kitchen proposal.

4 Evaluating Coarse-Grained Localizations

The coarse localizations produced by our framework generally do not precisely contain the localized
entity as seen in Fig. 5. However, such localizations can still be useful navigation goals for reaching
the entities. Evaluating coarse localizations using metrics such as Intersection Over Union (IoU)
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fails to assess localizations in terms of “imprecise but still useful” navigation goals. For example,
localizing a small area within a bedroom would be a useful goal for navigating to the bedroom but
have poor IoU against the room’s bounding box label.

4.1 Metrics for Evaluating Coarse-Grained Localizations
Our goal is to produce a proposal P that is useful for locating the desired entity. In other words, if
the robot reaches the region P , it should be close enough to an instance of the desired entity E ∈ E .
This is aligned with the objective of the Habitat ObjectNav Challenge [2] benchmark, where an
agent is successful in navigating to a goal object if the distance between the agent and the nearest
goal object is below 1.0 m1 and the object can be viewed with basic yaw and pitch movements of
the camera. We quantify the usefulness of P as the expected length of the shortest path an agent
must travel from P to reach any desired entity instance in the set E . We denote this quantity as the
Proposal to Entities Distance (P2E) defined as

P2E = E
p∼P

[
min
E∈E

d(p,E)
]
, (1)

where d(·, ·) is the shortest path length function. We can evaluate P2E over a set of proposals and
classify proposals with P2E under a set threshold (e.g. 1.0 m) as relevant. We refer to the portion of
relevant proposals for that threshold as the Precision at Threshold and use it to measure the precision
of that set of proposals.

Symmetrically, we define the Entity to Proposals Distance (E2P) which evaluates for an entity in-
stance E the shortest expected path length from E to reach any proposal for that entity. For a set of
entity instances, we compute the portion with E2P below a threshold for a given set of proposals as
a measure of the recall for that set of proposals, which we denote as the Recall at Threshold.

The expected shortest path length is difficult to compute exactly so we approximate it by constructing
a grid graph over the scene that avoids collisions with the scene geometry, allowing the computation
of approximate shortest paths. Nodes of the grid graph are assigned to the proposals and entity
instances and the expectation is approximated by averaging over the assigned nodes. Computing
the approximations of P2E and E2P is equivalent to computing the Directed Average Hausdorff
Distance (DAHD) [54], a metric commonly used in medical image segmentation.

4.2 Evaluation Implementation
Evaluations are performed on the Matterport3D dataset [55]. The evaluation is separated into object
and room/region evaluations. Object evaluation is done on the 21 common object classes defined by
the Habitat ObjectNav Challenge [2]. For regions, we evaluate all classes in Matterport3D except
for “other room”, “junk”, “no label”, “outdoor”, “entryway/foyer/lobby”, and “dining booth”. These
classes were ignored as they did not refer to actual rooms or corresponded to ambiguously labeled
regions. When evaluating a tag map, each class label is mapped to a list of corresponding tags.
Proposals are generated for all the corresponding tags that exist in the tag map and are grouped
to form the set of proposals for the class. Unless stated otherwise, we report the precision and
recall over all classes by averaging the precision and recall across classes. Further details on the
implementation of the evaluation are found in Appendix D.

5 Results

5.1 Comparison with Embedding Based Maps

Tag map localizations are compared against localizations from open vocabulary embedding-based
maps using the proposed precision and recall metrics. We chose to compare against OpenScene [23]
for 3D segmentation using a point cloud representation with an embedding for each point, and
OpenMask3D [25] for 3D instance segmentation which stores 3D instance masks with embeddings

1In the challenge, another 0.1m is allowed, thus the distance threshold is actually 1.1 m.
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for each mask. We query all embeddings with all class labels at once, then assign each embedding a
class based on the best matching class following Peng et al. [23]. Another option is to query classes
individually and assign embeddings a class if they match above a threshold as done in Lu et al. [26].
However, picking a suitable threshold is difficult and thresholds may not transfer across scenes. For
OpenScene, we cluster the segmentation output to obtain instance bounding boxes following Lu
et al. [26]. The comparison is only done over the Matterport3D test split as OpenScene uses the
train and validation splits during training.

Object Precision-Recall Precision at Threshold [m] Recall at Threshold [m]

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

OpenScene [23] 0.31 0.36 0.41 0.46 0.12 0.29 0.61 0.88
OpenMask3D [25] 0.29 0.35 0.41 0.48 0.05 0.19 0.41 0.60
Tag Map (Ours) 0.28 0.39 0.46 0.53 0.13 0.42 0.65 0.82

Table 1: Evaluation on object classes against open-vocabulary map representations.

Region Precision-Recall Precision at Threshold [m] Recall at Threshold [m]

0.5 1.0 2.0 3.0 0.5 1.0 2.0 3.0

OpenScene [23] 0.32 0.33 0.36 0.38 0.22 0.36 0.56 0.64
OpenMask3D [25] 0.56 0.58 0.61 0.63 0.10 0.26 0.49 0.63
Tag Map (Ours) 0.46 0.50 0.54 0.56 0.11 0.22 0.44 0.64

Table 2: Evaluation on region classes against open-vocabulary map representations.

0 5 10 15 20 25 30 35 40
Scene Mesh Volume [m3]

10 1

100

101

102

103

104

M
em

or
y 

Us
ag

e 
[M

B]

Tag Map OpenScene OpenMask3D

Figure 6: Memory use of the tag map and
open-vocabulary maps across scenes of vari-
ous sizes. Scene size is measured as the voxel
volume after voxeling the scene mesh

The comparison results are reported in Tables 1
and 2. For objects, the tag map outperforms both
embedding-based maps for most precision and re-
call thresholds. However, the embedding-based
maps have better precision when the threshold is set
to a smaller value (e.g. 0.1 m), due to these methods
storing geometric information to produce tighter in-
stance bounding boxes. For regions, OpenMask3D
achieves the best precision across thresholds as it
produces smaller instance proposals that are often
precisely located within the region label. How-
ever, these smaller proposals have lower recall as
the larger size of region labels results in higher
E2P. Conversely, OpenScene tends to produce
much larger proposals for region classes resulting in
lower E2P and better recall. The tag map achieves
good precision for region classes but the worst re-
call compared to the other methods. Note that larger precision-recall thresholds are used for the
regions as region labels are much larger than object labels. We also compared the memory usage of
the maps in Fig. 6. The tag map uses much less memory than the embedding-based maps as storing
the embedding vectors requires significantly more memory than text-based tags. The comparison is
especially stark against OpenScene which stores per-point embeddings for a scene point cloud.

5.2 Comparison with CLIP Viewpoint Retrieval
The recent work of Chang et al. [5] proposed to use store viewpoint CLIP embeddings and to search
over the embeddings when given an object query. We modify our coarse localization method to
retrieve viewpoints using CLIP instead of using the relevant tags. To make the comparison fair,
for both methods, we retrieve only the top K most confident viewpoints. For tags, we use the tag
prediction confidences from the tagging model. We also include the unmodified tag localization
method as a baseline, denoted as “all views”. Precision and recall comparisons for the two methods
at different thresholds are reported in Fig. 7. Retrieval via tags consistently outperforms CLIP
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Figure 7: Comparing the effect of retrieving viewpoints using tags against using CLIP embeddings
on coarse localization precision and recall. We compare retrieving the top {1, 5, 10, 20} most
confident viewpoints for each method. For using tags, we also include “all views”, which retrieves
all tagged viewpoints. Using tags consistently outperforms CLIP embeddings in precision for both
object and region classes as well as consistently better recall for objects.

retrieval in terms of precision for the same K, suggesting that the performance of image embeddings
is behind that of models specialized in recognition. For object classes, tag-based retrieval also
outperforms CLIP in terms of recall. We observe a general trend of trading off precision for recall
for increasing K which is to be expected. For object classes, retrieving all relevant viewpoints (“all
views”) results in a significant increase in recall while this only produces a slight increase in recall
for region classes. This is because a single scene only contains a few large region instances but many
smaller object instances. Therefore, only a few views are necessary to recall all region instances.

5.3 Ablation of the Map Construction Modules

Object Precision-Recall Precision at Threshold [m] Recall at Threshold [m]

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

RAM 0.28 0.38 0.45 0.52 0.11 0.39 0.63 0.82
RAM w/o ensemble 0.23 0.33 0.39 0.45 0.13 0.43 0.67 0.85
RAM w/o depth 0.27 0.38 0.44 0.51 0.11 0.39 0.64 0.82
RAM++ 0.26 0.36 0.43 0.49 0.12 0.40 0.64 0.83

Table 3: Tag map construction modules ablations evaluated on precision and recall for object classes.
For conciseness, crop ensemble filtering is referred to as “ensemble” and depth filtering as “depth”.

We ablate the tagging model, the crop ensemble filter, and the depth filter. We compared the tagging
models RAM [50] and its successor RAM++ [51], finding that RAM++ did not outperform RAM in
our evaluations. This is likely because RAM++ is designed to improve the recognition of rare classes
and our evaluation is limited to more common classes from Matterport3D. The depth filter was
found to have an insignificant impact on the evaluation performance. We believe this is because the
depth filtering removes uninformative views which often generate incorrect tags that are generally
unrelated to the classes considered in the evaluation (see Fig. 3). Removing the crop ensemble
filter results in a notable drop in precision with a smaller gain in recall, suggesting that the crop
ensemble filter provides a favorable tradeoff between filtering false positive tags and over-filtering
true positives. Ablation results over object classes are reported in Table 3 while region class results
are reported in Appendix A.1.
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Figure 8: An example of grounded navigation using a tag map on a real robot. A user asks the system
to assist with some task through a chat interface. First, the LLM uses the tag map context to propose
relevant entities for the task. Next, the LLM queries the tag map API for additional information on
the entities of interest which it then uses to reason spatially and produce a navigation plan.

5.4 Experiments of Grounded Navigation on the Real Robot
Integration of the tag map with an LLM for grounded navigation was demonstrated on the legged
robot ANYmal [56]. A dataset from a lab/office scene was collected and viewpoint poses were
computed using COLMAP [57, 58] to construct the tag map and a scene mesh. The mesh is used for
visualization and to build a pose graph connecting neighboring viewpoints in the tag map that have a
traversable path to each other. The pose graph produces global path plans that are tracked by a local
planner based on Cao et al. [59]. We used GPT-4 [60] as the LLM and leveraged its function calling
capabilities to integrate it with the tag map API. The LLM is allowed to make multiple function
calls before giving its response. This allows the LLM to, for example, localize relevant tags using
localize tag() and then reason about them spatially using region region distance() in a
single response. This can be thought of as the LLM generating scene graph annotations between the
localized proposals. We also prompt the LLM to consider the localization confidence levels such
that it will prefer selecting more confident localizations to navigate to.

A user is given a chat interface for conversing with the LLM which allows the LLM to ask the
user for additional clarifying information and for the user to provide follow-up tasks building on
top of previous queries. Fig. 8 demonstrates examples of grounded navigation addressing tasks
given by a user. We focus on tasks where the relevant entities for solving the task are not explicitly
mentioned and must be inferred by the LLM through the tag map context. In addition to the robot
demonstrations, a more thorough evaluation of the Tag Map grounded navigation pipeline over a set
of test user queries is presented in Appendix F.

6 Conclusions, Limitations, and Future Work
This work presented a text-based map that can represent an extensive set of entities, including rare
objects and regions, and coarsely localize them in 3D. Being text-based allowed the map to seam-
lessly ground an LLM through its prompt. Interfacing the LLM’s function calling with the map
enabled further spatial reasoning by the LLM on the localized entities. The tagging model used in
this work was prone to producing false positive tags which risked polluting the context given to the
LLM. However, the false positive tags were often spurious concepts having little to do with the more
practical tasks we tested and were mostly ignored by the LLM. Though sometimes the LLM gen-
erated infeasible plans due to such tags. For the evaluations conducted on Matterport3D, we were
limited to the viewpoints available in the dataset. It remains an open question if different viewpoint
collection strategies can improve the map’s localizations. Additionally, we only considered static
scenes and did not consider cases where entities could have moved, leaving this for future work.

8



Acknowledgments

This work was supported by Huawei Tech R&D (UK) through a research funding agreement, by the
Swiss National Science Foundation through the National Centre of Competence in Digital Fabrica-
tion (NCCR dfab), and by an ETH RobotX research grant funded through the ETH Zurich Founda-
tion. Moreover, this work has been conducted as part of ANYmal Research, a community to advance
legged robotics. We would also like to thank Jie Tan for helpful discussions on the paper.

References
[1] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Ma-

lik, R. Mottaghi, M. Savva, et al. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018.

[2] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. Toshev, and
E. Wijmans. Objectnav revisited: On evaluation of embodied agents navigating to objects.
arXiv preprint arXiv:2006.13171, 2020.

[3] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. Advances in Neural Information Processing Systems, 33:
4247–4258, 2020.

[4] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real
world. Science Robotics, 8(79):eadf6991, 2023.

[5] M. Chang, T. Gervet, M. Khanna, S. Yenamandra, D. Shah, S. Y. Min, K. Shah, C. Paxton,
S. Gupta, D. Batra, et al. Goat: Go to any thing. arXiv preprint arXiv:2311.06430, 2023.

[6] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[7] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-
hendran, A. Arnab, M. Dehghani, Z. Shen, et al. Simple open-vocabulary object detection. In
European Conference on Computer Vision, pages 728–755. Springer, 2022.

[8] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary object detection via vision and lan-
guage knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

[9] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl. Language-driven semantic
segmentation. In International Conference on Learning Representations, 2022.

[10] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin. Scaling open-vocabulary image segmentation with
image-level labels. In European Conference on Computer Vision, pages 540–557. Springer,
2022.
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Appendix

A Additional Results

A.1 Ablation Results of the Map Construction Modules for Region Classes

Region Precision-Recall for Precision at Threshold [m] Recall at Threshold [m]

0.5 1.0 2.0 3.0 0.5 1.0 2.0 3.0

RAM 0.49 0.51 0.54 0.57 0.06 0.13 0.40 0.55
RAM w/o ensemble 0.46 0.48 0.51 0.53 0.06 0.16 0.42 0.57
RAM w/o depth 0.48 0.51 0.54 0.56 0.06 0.19 0.42 0.56
RAM++ 0.44 0.46 0.49 0.53 0.06 0.15 0.42 0.57

Table 4: Tag map ablations evaluated on precision and recall for region classes. For conciseness,
crop ensemble filtering is referred to as “ensemble” and depth filtering as “depth”.

A.2 Tag Map Precision and Recall for Each Class in Matterport3D

Object Precision-Recall Precision at Threshold [m] Recall at Threshold [m]

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

bathtub 0.23 0.28 0.30 0.34 0.07 0.24 0.60 0.88
bed 0.53 0.61 0.65 0.69 0.05 0.41 0.68 0.94
cabinet 0.25 0.34 0.41 0.49 0.11 0.45 0.71 0.89
chair 0.39 0.53 0.62 0.72 0.18 0.44 0.63 0.79
chest of drawers 0.10 0.17 0.22 0.28 0.13 0.44 0.69 0.86
clothes 0.09 0.13 0.15 0.18 0.07 0.52 0.77 0.90
counter 0.34 0.41 0.46 0.52 0.11 0.36 0.62 0.81
cushion 0.21 0.40 0.51 0.58 0.09 0.36 0.59 0.82
fireplace 0.36 0.50 0.53 0.59 0.09 0.35 0.66 0.88
gym equipment 0.49 0.60 0.71 0.78 0.06 0.16 0.33 0.65
picture 0.42 0.58 0.68 0.78 0.20 0.49 0.69 0.83
plant 0.26 0.36 0.43 0.51 0.13 0.43 0.64 0.82
seating 0.24 0.32 0.37 0.45 0.03 0.23 0.35 0.51
shower 0.21 0.29 0.35 0.43 0.10 0.40 0.72 0.90
sink 0.18 0.33 0.43 0.51 0.17 0.55 0.81 0.92
sofa 0.30 0.42 0.50 0.56 0.07 0.31 0.50 0.72
stool 0.06 0.09 0.12 0.17 0.15 0.42 0.58 0.76
table 0.30 0.44 0.51 0.61 0.19 0.53 0.73 0.88
toilet 0.45 0.55 0.59 0.67 0.08 0.44 0.74 0.91
towel 0.29 0.41 0.52 0.59 0.03 0.25 0.51 0.67
tv monitor 0.16 0.31 0.39 0.49 0.17 0.46 0.73 0.86

Table 5: Precision-recall for common object classes evaluated over all 90 scenes of Matterport3D
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Region Precision-Recall Precision at Threshold [m] Recall at Threshold [m]

0.5 1.0 2.0 3.0 0.5 1.0 2.0 3.0

balcony 0.26 0.31 0.38 0.43 0.00 0.00 0.14 0.45
bar 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.33
bathroom 0.30 0.33 0.35 0.38 0.21 0.38 0.68 0.86
bedroom 0.47 0.49 0.52 0.54 0.06 0.16 0.56 0.85
classroom 0.60 0.60 0.60 0.60 0.00 0.00 0.50 0.50
closet 0.08 0.09 0.13 0.16 0.16 0.23 0.48 0.63
dining room 0.47 0.50 0.53 0.56 0.03 0.16 0.60 0.81
garage 0.69 0.72 0.72 0.77 0.00 0.00 0.29 0.57
hallway 0.54 0.59 0.68 0.73 0.05 0.14 0.43 0.67
kitchen 0.38 0.40 0.42 0.45 0.09 0.29 0.69 0.88
laundryroom/mudroom 0.68 0.70 0.72 0.72 0.00 0.17 0.63 0.89
library 1.00 1.00 1.00 1.00 0.00 0.00 0.50 0.50
living room 0.40 0.42 0.47 0.51 0.07 0.19 0.43 0.61
meetingroom/conferenceroom 0.32 0.36 0.36 0.44 0.04 0.08 0.12 0.28
office 0.36 0.38 0.44 0.48 0.06 0.14 0.37 0.43
porch/terrace/deck/driveway 0.54 0.55 0.58 0.61 0.05 0.11 0.36 0.52
rec/game 1.00 1.00 1.00 1.00 0.00 0.00 0.06 0.06
spa/sauna 0.34 0.37 0.37 0.40 0.02 0.07 0.16 0.23
stairs 0.26 0.29 0.35 0.38 0.08 0.20 0.53 0.72
tv 0.71 0.71 0.82 0.88 0.00 0.31 0.62 0.62
utilityroom/toolroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
workout/gym/exercise 0.89 0.89 0.89 0.92 0.00 0.00 0.38 0.75

Table 6: Precision-recall for region classes evaluated over all 90 scenes of Matterport3D

14



B Tag Map Parameters

The map construction and localization parameters used for all experiments are presented in Table 7
and 8 respectively.

Parameter Value

Tagging model ram swin large [50]
Crop ensemble border crop percentages [5%, 10%]
Depth filter mean threshold 0.6 m
Depth filter median threshold 0.6 m

Table 7: Tag map construction parameters

Parameter Value

Viewpoint near plane distance 0.2 m
Viewpoint far plane distance 80th percentile of depth values
Voxel size 0.2 m
DBSCAN eps 0.4 m
DBSCAN minimum points 5
Normalized votes clustering thresholds [0.00, 0.25, 0.50, 0.75]

Table 8: Tag map localization parameters

Note that the clustering thresholds on the voxel votes are set relative to the normalized votes, i.e. the
voxel votes normalized by the maximum votes of any voxel.
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C LLM Chat Prompt for Real-Robot Experiments

You are a helpful robot assistant.

To give you some knowledge of your environment, you are provided with
a set of tags. Each tag describes something that’s likely to be found
in the environment. You can use these tags to help you with assisting
the user.

Note that the tags are not perfect. Some tags may be incorrect and
the tags do not cover everything in the environment. Therefore, try to
pick the tag which you are most confident in.

You can query for the regions in the environment where a tag is
localized and also get the confidence level for each region.

When making a statement about a tag, do not say that the tag is
definitely in the environment, instead reference the confidence level.

If there are no tags directly related to the user’s request, suggest
tags which may be related to the user’s request and ask the user if
they would like to know more about the suggested tags.

List of tags in the format ‘[id] - [tag]’
0 - <tag 0>
1 - <tag 1>

...
N - <tag N>
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D Details of the Evaluation Implementation

D.1 Grid Graph Construction

Computing the P2E and E2P requires solving for the shortest paths within a scene, which we com-
pute approximately using a 3D grid graph that spans the scene without collision with the scene
geometry. Note that the grid graph connects nodes without consideration of traversability. For ex-
ample, the free space above a table would be connected but would not be traversable by a wheeled
robot. An overview of the steps to construct a grid graph is given in Algorithm 1.

Algorithm 1 Scene Grid Graph Generation
1: Input: Scene MeshM
2: Output: Set of nodes N and edges E
3: Determine the min and max bounds ofM
4: Generate a set of nodes N following a grid spanning these bounds
5: for each node n ∈ N do
6: if InsideScene(n,M) is false then
7: Remove n from N
8: end if
9: end for

10: Initialize empty set of edges E
11: for each node n ∈ N do
12: for each immediate neighbor n′ of n in the grid do
13: if (n, n′) /∈ E and CollisionFree(n, n′,M) is true then
14: Add edge (n, n′) to E
15: end if
16: end for
17: end for
18: Return N , E

The grid graphs are generated at a grid resolution of 0.5 m. We check if a point is inside the scene
by checking its nearest neighboring vertices. First, if the mean distance to these vertices is greater
than a threshold of 2 m we consider the point outside the scene. Second, we use the normals of
each neighboring vertex to check if the point is locally inside the mesh at that vertex by computing
the dot product of the vertex-to-point vector and the normal. We average the dot products across
all neighboring vertices and consider the point outside the mesh if the average exceeds a threshold
of 0. To evaluate if two points are collision-free, we cast a ray from one to the other and check for
collisions against the scene mesh.

D.2 Assigning Grid Graph Nodes

The assignment of grid graph nodes to instance proposals is given in Algorithm 2. For assigning
nodes to labeled entity instances, the algorithm differs depending on whether the entity is an object
or a region, as outlined in Algorithms 3 and 4 respectively.

The node assignment algorithms differ in the use of inflation to assign additional nodes. In the case
of instance proposals, inflation is only used when the proposal does not contain any nodes. Here
we set the inflation amount δ such that the extent of the inflated proposal is at least larger than the
space between nodes in the grid graph. For object labels, inflation is always used to assign additional
nodes. In this case, we set δ to capture nodes 1 m away from the label bounding box, following the
success criteria of the Habitat ObjectNav Challenge [2]. Lastly, no inflation is used for region labels
as they are large enough to contain at least some nodes.

If no nodes can be assigned to an instance proposal or labeled entity, then the P2E or E2P cannot be
computed. In these cases, we ignore that instance proposal or labeled entity when later computing
the precision and recall metrics.

17



Algorithm 2 Assign Grid Graph Nodes to an Instance Proposal
1: Input: Set of nodes N , Instance proposal bounding box P , Scene meshM, Inflation amount δ
2: Output: Set of nodes Nresult
3: Initialize Nresult ← ∅
4: Find nodes Nin ⊆ N that are contained within P
5: if Nin ̸= ∅ then
6: return Nin
7: end if
8: Inflate P by a fixed amount δ to obtain a new bounding box P ′

9: Find nodes Nin ⊆ N that are contained within P ′

10: for each node n ∈ Nin do
11: Find the nearest point p ∈ P to n
12: if CollisionFree(n, p,M) is true then
13: Add n to Nresult
14: end if
15: end for
16: return Nresult

Algorithm 3 Assign Grid Graph Nodes to a Labeled Object Instance
1: Input: Set of nodes N , Object label bounding box O, Scene meshM, Inflation amount δ
2: Output: Set of nodes Nresult
3: Find nodes Nin ⊆ N that are contained within O
4: Nresult ← Nin
5: Inflate O by a fixed amount δ to obtain a new bounding box O′

6: Find additional nodes N ′
in ⊆ N that are contained within O′ \O

7: for each node n ∈ N ′
in do

8: Find the nearest point p ∈ O to n
9: if CollisionFree(n, p,M) is true then

10: Add n to Nresult
11: end if
12: end for
13: return Nresult

Algorithm 4 Assign Grid Graph Nodes to a Labeled Region Instance
1: Input: Set of nodes N , Region label bounding box R, Scene meshM
2: Output: Set of nodes Nresult
3: Find nodes Nin ⊆ N that are contained within R
4: Nresult ← Nin
5: return Nresult
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D.3 Mapping Object Class Labels to Tags

Matterport3D includes a raw class label for all labeled objects. For example the raw labels “arm
chair” and “bean bag chair” are grouped into the common object class of “chair”. Both “arm chair”
and “bean bag chair” are within the set of classes able to be recognized by the tagging model.
Because of this, for each common object class, we identify the corresponding raw classes and map
them to matching tags within the vocabulary of the tagging model. We also manually identified tags
that corresponded to a common object class and included them in the mapping. The mapping for the
common object classes to tags are defined as follows:

bathtub: bath, jacuzzi

bed: bed, bed frame, bunk bed, canopy bed, cat bed, dog bed, futon, hammock, headboard, hospital
bed, infant bed, mattress

cabinet: armoire, bathroom cabinet, cabinet, cabinetry, closet, file cabinet, kitchen cabinet,
medicine cabinet, side cabinet, tv cabinet, wine cabinet

chair: armchair, beach chair, bean bag chair, beanbag, chair, computer chair, feeding chair, folding
chair, office chair, rocking chair, swivel chair, throne

chest of drawers: bureau, drawer, dresser, nightstand

clothes: baby clothe, baseball hat, bathrobe, bathroom accessory, bikini, bikini top, blouse, christ-
mas hat, cloak, clothing, coat, cocktail dress, corset, costume, cowboy hat, crop top, denim jacket,
dress, dress hat, dress shirt, dress shoe, dress suit, evening dress, fur coat, gown, halter top, hat,
headdress, headscarf, hoodie, jacket, jeans, jockey cap, kilt, kimono, lab coat, lace dress, laundry,
leather jacket, maxi dress, miniskirt, overcoat, pants, pantyhose, polo neck, polo shirt, raincoat, robe,
safety vest, scarf, shirt, ski jacket, sports coat, straw hat, sun hat, suspenders, sweat pant, sweater,
sweatshirt, t shirt, t-shirt, trench coat, underclothes, vest, visor, waterproof jacket, wedding dress,
wrap dress

counter: bar, buffet, counter, counter top, island, kitchen counter, kitchen island, wet bar

cushion: pillow, throw pillow

fireplace: fireplace, mantle

gym equipment: barbell, dumbbell, stationary bicycle, training bench, treadmill, weight

picture: art, art print, couple photo, decorative picture, drawing, family photo, group photo, movie
poster, oil painting, photo, photo frame, picture, picture frame, portrait, poster, publicity portrait,
reflection, wedding photo

plant: bush, flower, grass, houseplant, plant, tree

seating: bench, church bench, park bench, seat, window seat

shower: shower, shower door, shower head

sink: basin, bathroom sink, sink

sofa: couch, loveseat

stool: bar stool, footrest, music stool, step stool, stool

table: altar, billiard table, changing table, cocktail table, computer desk, dinning table, foosball,
glass table, kitchen table, office desk, picnic table, poker table, round table, side table, stand, table,
vanity, workbench, writing desk

toilet: bidet, toilet bowl, toilet seat

towel: bath towel, beach towel, face towel, hand towel, paper towel, towel

tv monitor: bulletin board, computer monitor, computer screen, display, monitor, television, white-
board
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D.4 Mapping Region Class Labels to Tags

We map region labels directly to corresponding tags in the vocabulary of the tagging
model whenever possible. Some region labels are made up of multiple concepts such as
“porch/terrace/deck/driveway”. In these cases, we try to map each concept to a tag if possible.

balcony: balcony

bar: bar

bathroom: bathroom

bedroom: bedroom

classroom: classroom

closet: closet

dining room: dining room

garage: garage

hallway: hallway

kitchen: kitchen

laundryroom/mudroom: laundry room

library: library

living room: living room

meetingroom/conferenceroom: meeting room

office: home office, office

porch/terrace/deck/driveway: deck, driveway, porch, terrace

rec/game: recreation room

spa/sauna: sauna

stairs: stairs, stairwell

tv: cinema, home theater, theater

utilityroom/toolroom: utility room

workout/gym/exercise: gym

We relabeled regions labeled “familyroom” and “lounge” as “living room” since these labels de-
scribed analogous regions. Similarly, we also relabeled regions labeled “toilet” as ‘bathroom”.
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E Label to Text Mappings for Embedding-Based Methods

To evaluate embedding-based methods, the class labels are mapped to strings which are then encoded
into text embeddings for querying the map embeddings.

E.1 OpenScene and OpenMask3D

We followed the authors of OpenScene and OpenMask3D and applied the prompting method of “a
{} in a scene” for object class labels. We modified the prompt to be grammatically correct for the
following object classes:

chest of drawers: a chest of drawers in a scene

clothes: clothes in a scene

gym equipment: gym equipment in a scene

tv monitor: a television monitor in a scene

For region classes, we directly used the label as the string, except for the following classes where
we modified the string to either be more grammatically correct or more accurately reflect the class
semantics:

laundryroom/mudroom: laundry room or mudroom

meetingroom/conferenceroom: meeting room or conference room

porch/terrace/deck/driveway: porch or terrace or deck or driveway

rec/game: recreation or game room

spa/sauna: spa or sauna

tv: cinema or home theater or theater

utilityroom/toolroom: utility room or tool room

workout/gym/exercise: gym

E.2 CLIP Viewpoint Retrieval

For viewpoint retrieval using CLIP, we mapped each label to a string and used the ImageNet80
ensemble prompting method from Radford et al. [6] to create the text embedding.

For object classes, we used the label directly as the string, except for the following classes where we
modified the string to be more grammatically correct or more accurately reflect the class semantics:

chest of drawers: chest of drawers

counter: countertop

gym equipment: gym equipment

tv monitor: television monitor

Similarly for region classes, we used the label directly as the string except for the following classes:

laundryroom/mudroom: laundry room or mudroom

meetingroom/conferenceroom: meeting room or conference room

porch/terrace/deck/driveway: porch or terrace or deck or driveway

rec/game: recreation or game room

spa/sauna: spa or sauna
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tv: cinema or home theater or theater

utilityroom/toolroom: utility room or tool room

workout/gym/exercise: gym
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F Additional Grounded Navigation Results

The performance of the LLM and Tag Map grounded navigation pipeline is evaluated on a set of
user queries that could be asked of a home assistant robot. The evaluation is done on a scan of the
lab environment used for the real robot experiments in Sec.5.4. We assume that the environment is
entirely traversable such that the robot can reach any goal location from any starting location.

A total of 25 user queries were evaluated. The grounded navigation for a query is considered suc-
cessful if the LLM grounded on the Tag Map context suggests an instance of a semantic class that
is relevant to addressing the query and if that instance is correctly localized from the Tag Map. The
Tag Map grounded navigation was successful in 21 of the 25 test queries. The detailed results for
all test queries are reported in Tables 9, 10, and 11.

Query Suggested Entity Successful? Example Goal Viewpoint

Please heat up my lunch microwave ✓

Please refill my water bottle faucet ✓

Please turn on the lights light switch ✓

Please put away
these dirty dishes dish washer ✓

Can you bring out the ice cream
It’s the other fridge,
not the main one

fridge ✓

The LLM localizes two fridges and a kitchen region from the tag map. It selects the fridge
further from the kitchen as it associates the fridge in the kitchen as the main fridge.

Ouch, I got a paper cut soap ✓

Can you go check if
there’s any mail for me? mailbox ✗

The image tagging model mistakenly recognizes a fire alarm as a mailbox.

Get me something hot to drink coffee machine ✓

Table 9: Tag Map grounded navigation results for the test user queries (1/3).
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Query Suggested Entity Successful? Example Goal Viewpoint

I spilled some water on the floor paper towel ✓

I spilled some sand on the floor vacuum ✓

Prepare somewhere for me
to take a nap couch ✓

Can you go downstairs to
meet the pizza delivery driver? stairwell ✓

It’s raining outside,
can you bring me something umbrella ✗

The image tagging model mistakenly recognizes an umbrella in the image.

It’s getting quite cold in here boiler ✗

The boiler tag describes a kettle, but the LLM misinterprets it as a home heating boiler.

It’s getting quite cold in here,
could you bring me something? coat ✓

In contrast to the previous query, the LLM interprets this query as bringing an item to warm
the user instead of trying to warm the space .

Take my phone and charge it charger ✓

Help! my shirt is on fire extinguisher ✓

Please prepare a location
for the party this evening terrace ✓

Table 10: Tag Map grounded navigation results for the test user queries (2/3).
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Query Suggested Entity Successful? Example Goal Viewpoint

The sunlight is making
it too bright in here blind ✓

Get me something to read magazine ✓

Can you get things ready
for the barbeque later barbeque grill ✗

The image tagging model mistakenly recognizes a large metallic object as a barbeque grill.

Set up a game for me and
my friend to play

table tennis
table

✓

Please take out the trash bin ✓

Can you get some
fresh air in here? window ✓

Can you bring me something
healthy to eat fruit ✓

Table 11: Tag Map grounded navigation results for the test user queries (3/3).
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G Qualitative Comparison of Tag Map and Embedding Maps Localizations

We present a selection of qualitative comparisons between the localization produced by the Tag Map,
OpenScene, and OpenMask3D. The selected examples do not represent an exhaustive selection but
rather aim to provide examples of localization successes and failures for the methods.

Figure 9: Localizations for sofa. The Tag Map can only localize the sofa coarsely, while the
embedding-based maps store more geometric information and can localize it more precisely.

Figure 10: Example localizations for toilet. In this case, we show two localizations produced by
the Tag Map. The second localization has worse P2E compared to the first since a significant portion
of it is outside the room of the toilet.

Figure 11: Examples of correct localizations for tv monitor.
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Figure 12: Examples of wrong localizations for tv monitor. The Tag Map produces a wrong
localization as the pictures on the wall are falsely recognized as a screen by the tagging model.
Similarly, OpenScene labels a picture on the wall as a screen. OpenMask3D wrongly labels an
instance mask.

Figure 13: Examples of wrong localizations for bed. The Tag Map produces a wrong localization
due to a false positive detection of the tag bed. OpenScene wrongly labels a table that looks like a
bed. OpenMask3D wrongly labels a wall as a bed.
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